
HSC SECOND YEAR – COMPUTER SCIENCE

CHAPTER 1: FUNCTION

Prepared by,

J. KAVITHA, B.Sc,B.Ed,M.C.A,M.Phil.,

Computer Instructor Gr - I,

GHSS, S.S.Kulam,

Coimbatore.

https://www.kavikalvi.freeweb.co.in/

LEARNING OBJECTIVES

To Know About,

Understand Function Specification

Parameters and arguments

Interface Vs Implementation

Pure functions & impure functions

ALGORITHMS

Algorithm is a Theoretical

representation of a program.

Algorithm, is a set of step-by-step

instructions that define how a work is

to be executed to get the expected

results.

NOTATIONS FOR ALGORITHMS

 We need a notation to represent algorithms. There

are mainly three different notations for representing

algorithms.

Notations for Algorithms

Programming language

FlowchartsPseudo-code

PSEUDO CODE

Pseudo code is a notation similar to

programming languages.

Algorithms expressed in pseudo code

are not intended to be executed by

computers, but for communication

among people.

FLOWCHART

 Flowchart is a diagrammatic notation for

representing algorithms. They give a visual

intuition of the flow of control, when the

algorithm is executed.

PROGRAMMING LANGUAGE

A programming language is a notation

for expressing algorithms so that a

computer can execute the algorithm.

An algorithm expressed in a

programming language is called a

program.

C, C++ and Python are examples of

programming languages.

EXAMPLE: ADDING WO NUMBERS

Algorithms

Pseudo code

Flowchart Coding

Step1: Start

Step2: Get the two numbers

Step3: Add those two numbers

Step4: Write the answer

Step5: Stop

input x , y

z = x + y

Print z

x = int(input())

y = int(input))

z = x + y

print(z)

start

input x, y

z = x + y

print z

stop

FUNCTIONS – INTRODUCTION

The most important criteria in writing

and evaluating the algorithm is the time

it takes to complete a task.

Algorithms are expressed using
statements of a programming language.

 If a bulk of statements to be repeated for

many numbers of times then subroutines
are used to finish the task.

SUBROUTINES

Subroutines are the basic building blocks

of computer programs.

 Subroutines are small sections of code

that are used to perform a particular

task that can be used repeatedly.

 In Programming languages these
subroutines are called as Functions.

FUNCTION WITH RESPECT TO

PROGRAMMING LANGUAGE

A function is a unit of code that is

often defined within a greater code

structure.

Specifically, a function contains a set

of code that works on many kinds of

inputs, like variables, expressions

and produces a concrete output.

FUNCTION SPECIFICATION

 Let us consider the example a:= (24).

 a:= (24) has an expression in it but (24) is

not itself an expression. Rather, it is a
function definition.

 Definitions bind values to names, in this

case the value 24 being bound to the name
‘a’.

 Definitions are distinct syntactic blocks.

THE SYNTAX FOR FUNCTION DEFINITIONS

 Here the ‘fn’ is used as a function name.

 The names ‘a1’ to ‘an’ are variables used as

parameters.

 The keyword ‘rec’ is required if ‘fn’ is to be a

recursive function; otherwise it may be omitted.

let rec fn a1 a2 ... an := k

Example

let max x y =

if x>y then

x

else

y

PARAMETERS AND ARGUMENTS

Parameters are the variables in a

function definition

Arguments are the values which are

passed to a function definition.

PARAMETER WITHOUT TYPE

 Some language compilers solve this data type

problem algorithmically, if we do not specify the

data types of variables in the function.

 In the above function definition if expression can

return 1 in the then branch, shows that as per the

typing rule the entire if expression has type int.

 Since ‘a’ is multiplied with another expression

using the * operator, ‘a’ must be an int.

Example
(#requires: b>=0#)
(#returns: a to the power of b#)

let rec pow a b:=
if b=0 then 1
else a * pow b (a-1)

PARAMETER WITH TYPE

 When we write the type annotations for ‘a’ and ‘b’ the

parentheses are mandatory.

 Generally we can leave out these annotations,

because it's simpler to let the compiler infer them.

Example:
(#requires: b> 0#)
(#returns: a to the power of b#)

let rec pow (a:int) (b:int) :int :=
if b=0 then 1
else a * pow b (a-1)

RECURSIVE FUNCTION

 A function definition which call itself is called

recursive function.

 Which of the following is a normal function

definition and which is recursive function

definition. -

let sum x y:

return x + y

let disp :

print ‘welcome’

let rec sum num:

if (num!=0) then

return num + sum (num-1)

else

return num

Normal function

Normal function

Recursive

function

IDENTIFY IN THE FOLLOWING PROGRAM

let rec gcd a b :=

if b<>0 then gcd b (a mod b) else return a

 Name of the function -

 Identify the statement which tells it is a recursive function -

 Name of the argument variable -

 Statement which invoke the function recursively -

 Statement which terminates the recursion -

gcd

let rec gcd a b :=

a, b

gcd b(a mod b)

return a

INTERFACE VS IMPLEMENTATION

 An interface is a set of action that an object can

do.

 Implementation carries out the instructions

defined in the interface

 In object oriented programs classes are the

interface and how the object is processed and

executed is the implementation.

EXAMPLE

 Consider the following implementation of a

function that finds the minimum of its three

arguments:

let min 3 x y z :=

if x < y then

if x < z then x else z

else

if y < z then y else z

THE DIFFERENCE BETWEEN INTERFACE AND

IMPLEMENTATION

Interface Implementation

Interface just defines

what an object can do,

but won’t actually do it

Implementation

carries out the

instructions defined in

the interface

CHARACTERISTICS OF INTERFACE

The class template specifies the

interfaces to enable an object to be

created and operated properly.

An object's attributes and behaviour is

controlled by sending functions to the

object.

PURE FUNCTIONS

 Pure functions are functions which will give
exact result when the same arguments are
passed.

 A function can be a pure function provided it
should not have any external variable which will
alter the behaviour of that variable.

 The above function square is a pure function
because it will not give different results for same
input.

Example

let square x

return: x * x

IMPURE FUNCTIONS

 The variables used inside the function may cause

side effects though the functions which are not

passed with any arguments. In such cases the

function is called impure function.

 When a function depends on variables or functions

outside of its definition block, you can never be sure

that the function will behave the same every time it’s
called.

 Here the function Random is impure as it is not sure

what will be the result when we call the function.

எடுத்துக்காட்டு
let Random number
let a := random()

if a > 10 then return: a
else return: 10

MODIFY VARIABLE OUTSIDE A FUNCTION

 One of the most popular side effects is
modifying the variable outside of function.

 Here, the result of inc() will change every

time if the value of 'y’ get changed inside

the function definition.

 Hence, the side effect of inc () function is

changing the data of the external variable

‘y’.

Example

let y := 0
(int) inc (int)x
y := y+x;
return(y)

DIFFERENTIATE PURE AND IMPURE FUNCTION

Pure function Impure function

The return value of the pure

functions solely depends on its

arguments passed.

The return value of the impure

functions does not solely

depend on its arguments

passed.

Pure functions will give exact

result when the same

arguments are passed.

Impure functions never assure

you that the function will

behave the same every time it’s

called.

They do not have any side

effects.

They have side effects.

They do not modify the

arguments which are passed to

them.

They may modify the

arguments which are passed to

them.

EVALUATION

1. The small sections of code that are used to perform a particular task is

called

(A) Subroutines (B) Files (C) Pseudo code (D) Modules

(A) Subroutines

2. Which of the following is a unit of code that is often defined within a

greater code structure?

(A) Subroutines (B) Function (C) Files (D) Modules

(B) Function

3. Which of the following is a distinct syntactic block?

(A) Subroutines (B) Function (C) Definition (D) Modules

(C) Definition

4. The variables in a function definition are called as

(A) Subroutines (B) Function (C) Definition (D) Parameters

(D) Parameters

5. The values which are passed to a function definition are called

(A) Arguments (B) Subroutines (C) Function (D) Definition

(A) Arguments

EVALUATION

6. Which of the following are mandatory to write the type annotations in

the function definition?

(A) { } (B) () (C) [] (D) < >

(B) ()

7. Which of the following defines what an object can do?

(A) Operating System (B) Compiler

(C) Interface (D) Interpreter

(C) Interface

8. Which of the following carries out the instructions defined in the

interface?

(A) Operating System (B) Compiler

(C) Implementation (D) Interpreter

(C) Implementation

EVALUATION

9. The functions which will give exact result when same arguments are

passed are called

(A) Impure functions (B) Partial Functions

(C) Dynamic Functions (D) Pure functions

(D) Pure functions

10. The functions which cause side effects to the arguments passed are

called

(A) Impure functions (B) Partial Functions

(C) Dynamic Functions (D) Pure functions

(A) Impure functions

IMPORTANT QUESTIONS:

1. What is a subroutine?

2. Define Function with respect to Programming language.

3. Differentiate interface and implementation.

4. Mention the characteristics of Interface.

5. Why strlen is called pure function?

6. Differentiate pure and impure function.

7. What are called Parameters?

8. Write a note on: (i) Parameter without Type

(ii) Parameter with Type

9. Explain with example Pure and impure functions.

10. Explain with an example interface and implementation.

THANK YOU!!!

Education is the
foundation of all

we do in life.
It shapes who we are

and what we
aspire to be.

J. KAVITHA, B.Sc, B.Ed, M.C.A, M.Phil.,

Computer Instructor Gr - I

GHSS, S.S.KULAM

Coimbatore – 641107.

