
Prepared by,

J. KAVITHA, B.Sc,B.Ed,M.C.A,M.Phil.,

Computer Instructor Gr - I,

GHSS, S.S.KULAM,

Coimbatore.

https://www.kavikalvi.freeweb.co.in/

The students will be able to:

 Know the basics and technical perspective
of algorithms.

 Understand the efficiency, time and space
complexity of an algorithm.

 Develop and analyze algorithms for
searching and sorting.

 Learn about dynamic programming
through algorithmic approach.

Learning Objectives

Introduction to Algorithmic strategies

 An algorithm is a finite set of instructions to
accomplish a particular task.

 It is a step-by-step procedure for solving a
given problem.

 An algorithm can be implemented in any
suitable programming language.

Important Activities

Search To search an item in a data structure using linear
and binary search.

Sort To sort items in a certain order using the
methods such as bubble sort, insertion sort,
selection sort, etc.

Insert To insert an item (s) in a data structure.

Update To update an existing item (s) in a data structure.

Delete To delete an existing item (s) in a data structure.

Characteristics of an algorithm
Input Zero or more quantities to be supplied.

Output At least one quantity is produced.

Finiteness Algorithms must terminate after finite number of steps.

Definiteness All operations should be well defined.

Effectiveness Every instruction must be carried out effectively.

Correctness The algorithms should be error free.

Simplicity Easy to implement.

Unambiguous Algorithm should be clear and unambiguous.

Feasibility Should be feasible with the available resources.

Portable An algorithm should be generic, independent of any programming

language or an operating system able to handle all range of inputs.

Independent An algorithm should have step-by-step directions, which should be

independent of any programming code.

Analysis of Algorithm

 Computer resources are limited.

 Efficiency of an algorithm is defined by the
utilization of time and space complexity.

 Analysis of algorithms and performance evaluation
can be divided into two different phases:

 A Priori estimates: This is a theoretical
performance analysis of an algorithm. Efficiency of
an algorithm is measured by assuming the external
factors.

 A Posteriori testing: This is called performance
measurement. In this analysis, actual statistics like
running time and required for the algorithm
executions are collected.

Complexity of an Algorithm

 The two main factors, which decide the
efficiency of an algorithm are,

 Time Factor: Time is measured by counting
the number of key operations like
comparisons in the sorting algorithm.

 Space Factor: Space is measured by the
maximum memory space required by the
algorithm.

Complexity of an Algorithm

 The complexity of an algorithm f(n) gives the
running time and/or the storage space required by
the algorithm in terms of n as the size of input
data.

Types of complexity:

1. Time Complexity: The Time complexity of an
algorithm is given by the number of steps taken
by the algorithm to complete the process.

2. Space Complexity: Space complexity of an
algorithm is the amount of memory required to
run to its completion

Efficiency of an algorithm
 The efficiency of an algorithm is defined as the

number of computational resources used by the
algorithm.

 An algorithm must be analyzed to determine its
resource usage.

 The efficiency of an algorithm can be measured based
on the usage of different resources.

 For maximum efficiency of algorithm we wish to
minimize resource usage.

 The important resources such as time and space
complexity cannot be compared directly, so time and
space complexity could be considered for an
algorithmic efficiency.

Method for determining Efficiency

 The efficiency of an algorithm depends on how
efficiently it uses time and memory space.

 For example, write a program for a defined algorithm,
execute it by using any programming language, and
measure the total time it takes to run.

 The execution time that you measure in this case
would depend on a number of factors such as:

 Speed of the machine

 Compiler and other system Software tools

 Operating System

 Programming language used

 Volume of data required

Asymptotic Notations

Asymptotic Notations are languages that
use meaningful statements about time
and space complexity.

Big O - Worst-case of an algorithm.

Big Ω - Best -case of an algorithm

Big - complexity case of an algorithm
(Or) lower bound = upper bound

Algorithm for Searching Techniques

Linear Search:

 Linear search also called sequential search is a
sequential method for finding a particular value in a list.
This method checks the search element with each
element in sequence until the desired element is found
or the list is exhausted.

 In this searching algorithm, list need not be ordered.

Binary Search:

 Binary search also called half-interval search algorithm.
It finds the position of a search element within a sorted
array.

 The binary search algorithm can be done as divide-and-
conquer search algorithm and executes in logarithmic
time.

Linear Search
Procedure:

 Traverse the array using for loop

 In every iteration, compare the target search key
value with the current value of the list.

 If the values match, display the current index and
value of the array

 If the values do not match, move on to the next
array element.

 If no match is found, display the search element
not found.

Linear Search

 Linear search will go step by step in a sequential order
starting from the first element in the given array, if
the search element is found that index is returned
otherwise the search is continued till the last index of
the array.

Example:

Input: values[] = {5, 34, 65, 12, 77, 35}

target = 77

Output: 4

Input: values[] = {101, 392, 1, 54, 32, 22, 90, 93}

target = 200

Output: -1 (not found)

Binary Search

Procedure for Binary search:
1. Start with the middle element:
 If the search element is equal to the middle element of

the array, then return the index of the middle element.
 If not, then compare the middle element with the search

value,
 If the search element is greater than the number in the

middle index, then select the elements to the right side
of the middle index, and go to Step-1.

 If the search element is less than the number in the
middle index, then select the elements to the left side of
the middle index, and start with Step-1.

2. When a match is found, display success message with the
index of the element matched.
3. If no match is found for all comparisons, then display
unsuccessful message.

Binary Search - EXAMPLE

Let us assume that the search element is 60 and we need
to search the index of search element 60 using binary
search.

 First, we find index of middle element by using this
formula :

mid = (low + high) / 2 , Here it is, (0 + 9) / 2 = 4.

 Compare the value stored at index 4 with target value,
which is not match with search element. As the search
value 60 >50.

 Now we change our search range low to mid + 1 and
find the new mid value as index 7.

Binary Search - EXAMPLE

 We compare the value stored at index 7 with our
target value.

 Element not found because the value in index 7 is
greater than search value. (80 > 60)

 Now we change our search range low to mid - 1 and
find the new mid value as index 5.

 We compare the value stored at location 5 with our
search element.

 We found that it is a match.

 We can conclude that the search element 60 is
found at location or index 5.

 If no match is found for all comparisons, then
return -1.

Sorting Techniques - Bubble sort algorithm

 Bubble sort is a simple sorting algorithm; it
starts at the beginning of the list of values
stored in an array.

 It compares each pair of adjacent elements
and swaps them if they are in the unsorted
order.

 This comparison and passed to be continued
until no swaps are needed, which shows the
values in an array is sorted.

Sorting Techniques - Bubble sort algorithm

Pseudo code:

 Start with the first element i.e., index = 0,
compare the current element with the next
element of the array.

 If the current element is greater than the next
element of the array, swap them.

 If the current element is less than the next or
right side of the element, move to the next
element.

 Go to Step 1 and repeat until end of the index
is reached.

Bubble sort algorithm
Example: Consider an array with values {15, 11, 16, 12, 14, 13}.

15 > 11 15 11 16 12 14 13
So Interchange

15 > 16 11 15 16 12 14 13
No Swapping

16 > 12 11 15 16 12 14 13
So Interchange

16 > 14 11 15 12 16 14 13
So Interchange

16 > 13 11 15 12 14 16 13So Interchange

11 15 12 14 13 16

Bubble sort algorithm

 The above pictorial example is for iteration-1.

 Similarly, remaining iteration can be done.

 At the end of all the iterations we will get the
sorted values in an array as given below:

11 12 13 14 15 16

Selection sort
 The selection sort is a simple sorting algorithm

that improves on the performance of bubble sort
by making only one exchange for every pass
through the list.

 This algorithm will first find the smallest
elements in array and swap it with the element in
the first position of an array, then it will find the
second smallest element and swap that element
with the element in the second position, and it
will continue until the entire array is sorted in
respective order.

Selection sort - Example

Insertion sort

 Insertion sort is a simple sorting algorithm.

 It works by taking elements from the list one by
one and inserting then in their correct position in
to a new sorted list.

 This algorithm builds the final sorted array at the
end.

 This algorithm uses n-1 number of passes to get
the final sorted list.

Insertion sort - Example

Dynamic programming

 Dynamic programming is used when the
solution to a problem can be viewed as the
result of a sequence of decisions.

 Dynamic programming approach is similar to
divide and conquer (i.e) the problem can be
divided into smaller sub-problems.

 Results of the sub-problems can be re-used to
complete the process.

 Dynamic programming approaches are used
to find the solution in optimized way.

Dynamic programming

Steps to do Dynamic programming:

 The given problem will be divided into smaller
overlapping sub-problems.

 An optimum solution for the given problem
can be achieved by using result of smaller sub-
problem.

 Dynamic algorithms uses Memoization.

Example: Fibonacci Iterative Algorithm with
Dynamic Programming Approach

Initialize f0=0, f1 =1

step-1: Print the initial values of Fibonacci f0 and f1

step-2: Calculate fibanocci fib ← f0 + f1

step-3: Assign f0← f1, f1← fib

step-4: Print the next consecutive value of fibanocci
fib

step-5: Go to step-2 and repeat until the specified
number of terms generated

For example if we generate fibonacci series up to 10
digits, the algorithm will generate the series as shown
below:

 The Fibonacci series is : 0 1 1 2 3 5 8 13 21 34 55

Evaluation
1. The word comes from the name of a Persian mathematician Abu

Ja’far Mohammed ibn-i Musa al Khowarizmi is called?

(A) Flowchart (B) Flow

(C) Algorithm (D) Syntax

2. From the following sorting algorithms which algorithm needs
the minimum number of swaps?

(A) Bubble sort (B) Quick sort

(C) Merge sort (D) Selection sort

3. Two main measures for the efficiency of an algorithm are

(A) Processor and memory (B) Complexity and capacity

(C) Time and space (D) Data and space

4. The algorithm that yields expected output for a valid input in
called as

(A) Algorithmic solution (B) Algorithmic outcomes

(C) Algorithmic problem (D) Algorithmic coding

Evaluation
5. Which of the following is used to describe the worst case of

an algorithm?

(A) Big A (B) Big S (C) Big W (D) Big O

6. Big Ω is the reverse of

(A) Big O (B) Big θ (C) Big A (D) Big S

7. Binary search is also called as

(A) Linear search (B) Sequential search

(C) Random search (D) Half-interval search

8. The Θ notation in asymptotic evaluation represents

(A) Base case (B) Average case

(C) Worst case (D) NULL case

Evaluation
9. If a problem can be broken into subproblems which are

reused several times, the problem possesses which
property?

(A) Overlapping subproblems (B) Optimal substructure

(C) Memoization (D) Greedy

10. In dynamic programming, the technique of storing the
previously calculated values is called?

(A) Saving value property (B) Storing value property

(C) Memoization (D) Mapping

IMPORTANT QUESTIONS:

1. What is an Algorithm?

2. Write the phases of performance evaluation of an
algorithm.

3. What is Insertion sort?

4. What is Sorting?

5. What is searching? Write its types.

6. List the characteristics of an algorithm.

7. Discuss about Algorithmic complexity and its types.

8. What are the factors that influence time and space
complexity.

9. Write a note on Asymptotic notation.

10. What do you understand by Dynamic programming?

THANK YOU!!!

Knowledge is power.

Information is liberating.

Education is the premise

of progress, in every

society, in every family.

J. KAVITHA, B.Sc, B.Ed, M.C.A, M.Phil.,

Computer Instructor Gr - I

GHSS, S.S.KULAM

Coimbatore – 641107.

